

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC 1/SC 29/WG1

(ITU-T SG16)

Coding of Still Pictures

JBIG JPEG
Joint Bi-level Image Joint Photographic

Experts Group Experts Group

TITLE: Verification Model Description for JPEG Pleno Learning-based Point

Cloud Coding v1.0

SOURCE: WG1

EDITORS: André Guarda, Stuart Perry

PROJECT: JPEG Pleno

STATUS: Approved

REQUESTED
ACTION: For Information

DISTRIBUTION: Public

Contact:
ISO/IEC JTC 1/SC 29/WG1 Convener – Prof. Touradj Ebrahimi
EPFL/STI/IEL/GR-EB, Station 11, CH-1015 Lausanne, Switzerland
Tel: +41 21 693 2606, Fax: +41 21 693 7600, E-mail: Touradj.Ebrahimi@epfl.ch

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

Editorial Comments

This is a living document that goes through iterations. Proposals for revisions of the text can be
delivered to the editors André Guarda and Stuart Perry, by downloading this document, editing it
using track changes and sending it to andre.guarda@lx.it.pt and stuart.perry@uts.edu.au

If you have interest in JPEG Pleno Point Cloud, please subscribe to the email reflector, via the
following link: http://jpeg-pointcloud-list.jpeg.org

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

Table of Contents

1	 Executive Summary .. 4	

2	 Architecture and High-level Description .. 4	

3	 Detailed Module Description .. 5	

3.1	 PC Block Partitioning/Merging ... 6	

3.2	 Block Down/Up-sampling ... 6	

3.3	 DL-based Block Encoding and Decoding .. 7	

3.4	 DL-based Block Super-resolution .. 9	

3.5	 Binarization .. 11	

4	 DL Model Training .. 11	

4.1	 Coding Model Training .. 11	

4.2	 SR Model Training ... 14	

5	 Coding Configurations ... 15	

6	 References .. 15	

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

Verification Model Description for JPEG Pleno Learning-
based Point Cloud Coding v1.0

October 28th, 2022

1 Executive Summary

This document describes the JPEG Pleno Point Cloud Coding [wg1/N100097] Verification
Model (VM), consisting of a deep learning (DL)-based joint point cloud (PC) geometry and
colour codec [wg1/M96005].

2 Architecture and High-level Description
The VM codec consists of two main DL-based neural network modules, one focusing on
compressing the PC geometry and colour data, and the other (optional) focusing on post-
processing with the goal of performing up-sampling/super-resolution to increase the quality
at no rate cost. The VM codec offers a joint geometry and colour coding approach, in which
the same DL model processes geometry and colour simultaneously.

The overall architecture of the VM codec is presented in Figure 1.

Figure 1 Overall architecture of the Verification Model codec.

The various modules are briefly described as follows:

● Encoder:

o PC Block Partitioning: The voxelized PC is divided into disjoint 3D blocks of a
fixed target size, which are coded separately; the size of these block defines the
random access granularity.

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

o Block Down-sampling: Depending on the PC characteristics, each partitioned
block may be down-sampled to a lower grid precision; this is typically
advantageous when the PC is sparse, since it increases the density of the blocks
to be encoded.

o DL-based Block Encoding: Each block is encoded with an end-to-end DL coding
model. This process can be compared to a typical transform coding approach,
except that in this case a convolutional autoencoder (AE) is used to learn a non-
linear transform. The transform generates a set of coefficients, referred to as
the latent representation, which are then explicitly quantized by scaling with a
defined real-valued quantization step (QS), followed by rounding, and finally
entropy coded.

o Binarization Optimization: In order to provide adaptability to different PC
densities, this module optimizes the binarization process that will be applied at
the decoder. Since the output of the DL model decoder does not immediately
correspond to a PC, but rather to the probabilities of voxels being occupied, this
binarization process has the task to select the voxels and thus PC coordinates
which will be ‘occupied’, based on the generated probabilities. The optimization
process at the encoder produces a binarization parameter k, which corresponds
to the number of occupied voxels that will be reconstructed at the decoder, thus
it needs to be transmitted in the bitstream.

● Decoder:

o DL-based Block Decoding: Blocks are decoded using the decoder counterpart of
the DL-based block encoder mentioned before.

o Binarization: The decoded voxel probabilities for each block are binarized to
reconstruct the PC coordinates using the binarization parameter value resulting
from the optimization performed at the encoder.

o Block Up-sampling: If down-sampling was performed at the encoder, each block
is here up-sampled back to the original precision, without increasing the number
of points, thus using a simple up-sampling solution.

o DL-based Block Super-resolution (optional): This DL-based post-processing
module can be used to apply super-resolution (SR) to each block (since a basic
grid up-sampling has already been performed in the Block Up-sampling module),
in order to increase the number of points and, therefore, the density of the
reconstructed PC at no rate cost.

o Binarization: After the DL-based Block Super-resolution, it is necessary to once
again apply the binarization process, since occupied voxel probabilities are
created by the SR model.

o PC Block Merging: The decoded blocks are merged to reconstruct the full PC

3 Detailed Module Description

Each of the codec architecture modules presented in Figure 1 is described here in more
detail.

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

3.1 PC Block Partitioning/Merging
Before encoding, the PC is converted into a voxel-based 3D block representation, defining
a regular structure that allows the use of convolutional neural networks (CNNs), similarly to
image and video data.

The input PC contains not only the geometry (3D coordinates) but also the colour attributes,
typically in RGB colour space. As such, each voxel consists of four channels: the first channel
represents the geometry information as a binary signal, where a ‘1’ corresponds to an
occupied voxel while a ‘0’ corresponds to an empty voxel, and the remaining three channels
represent the 8-bit RGB colour information, one channel for each component. In order for
geometry and colour values to be in the same range, the RGB colour values are scaled from
the original [0, 255] range to [0, 1]. For empty voxels, the colour values are assumed to be
zero.

An example of the voxel-based representation is shown in Figure 2.

Figure 2 Example of conversion from 3D PC coordinates to a 3D block of binary voxels.

Considering this new representation, a straightforward way to organize a PC is to divide it
into disjoint blocks of a specific size, e.g., 64×64×64, which can then be coded separately
with a DL coding model. The position of each single 3D block is transmitted to the decoder
(Block Positioning in Figure 1).

At the decoder side, given the decoded blocks and their position, the full PC is reconstructed
by merging the blocks accordingly.

3.2 Block Down/Up-sampling
This pair of modules is used when appropriate depending in the PC characteristics to reduce
the PC coding precision (at encoder), allowing a more efficient compression, and then to
restore the original precision (at decoder). This is achieved by simply scaling the input PC
coordinates by a given sampling factor, followed by a rounding operation, which in turn
induces a loss of points/information, but results in a denser surface (also larger voxels). At

1

0

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

the decoder, the reconstructed PC coordinates are simply scaled back by the inverse
sampling factor, which does not change the number of points or their relative positions.

This approach is particularly useful in two situations:

● Sparse PCs coding: Since the DL coding model requires the conversion of the PC into a
3D block of binary voxels, the entire 3D space is represented including the empty voxels.
When dealing with sparse PCs, the number of actual points in each block is much smaller
than for dense PCs, meaning that the expended bits per input point (occupied voxels)
tends to be significantly higher. In addition, the DL coding model tends to have more
difficulty to correctly reconstruct sparser surfaces. As such, by reducing the coding
precision, the coding blocks are densified, giving an easier task to the DL coding model,
and bringing the coding rate to a more reasonable range.

● Low rate coding: It is common to experience some limitations when trying to train a DL
coding model to reach low rates, even for dense PCs. Furthermore, the quality of the
reconstructed PCs at low rates can be considerably degraded. This approach provides a
simple solution to reach low rates with fewer severe coding artifacts by down-sampling
the PC and coding the blocks with DL coding models trained for higher qualities/rates.

3.3 DL-based Block Encoding and Decoding
This section presents the adopted DL-based PC geometry coding model acting at block-level.
Based on successful CNN architectures for image coding [Ballé, 2018], the adopted end-to-
end DL coding model is presented in Figure 3.

(a)

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

(b)

Figure 3 End-to-end DL coding model architecture: (a) Overall DL coding model; (b) Detail of the IRB
block.

The full architecture can be divided into five main coding stages as follows:

● Autoencoder: The convolutional autoencoder (AE) transforms the input 3D block into a
latent representation with lower dimensionality, in a way comparable to the transform
coding stage in traditional image coding. This latent representation can be regarded as
the coefficients of the transform, and consists of multiple feature maps, which number
depends on the chosen number of filters for the convolutional layers. The AE consists of
a combination of 3D convolutional layers and Inception-Residual Blocks (IRB). The IRB is
inspired in the Inception-ResNet [Szegedy, 2017], a popular neural network used for
diverse image processing tasks; it contains several convolutional layers in parallel with
different filter support sizes, which allow to extract different types of features from
varying neighbouring contexts (from 5×5×5 to 1×1×1); in addition, a residual skip
connection allows to propagate the features along the network, which also facilitates
the training of deeper models. The number of filters starts from 32 in the first layer,
and progressively increases to 128 at the final encoder layer, resulting in a rich latent
representation. The AE contains a total of 2844704 trainable parameters, with 1211024
at the encoder side, and 1633680 at the decoder side.

● Quantization: The AE latent representation is explicitly quantized before entropy
coding. Considering a given quantization step (QS), which can be any positive real value,
the latents are first scaled by QS, and then rounded to the closest integer. This explicit
quantization approach allows to fine tune the target rate at coding time for a single
trained DL coding model. At training time, an implicit quantization approach is
considered (i.e., QS=1), and the rounding is replaced by a differentiable approximation,
which consists in adding uniform noise to simulate the quantization error [Ballé, 2018].

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

● AE Latents Conditional Entropy Coding: A conditional entropy coding approach is used
to entropy code the block latent representation. It uses a Gaussian mixture model
conditioned on a hyperprior as the entropy coding model. During training, the entropy
of the latent representation is estimated according to the entropy coding model, which
is then used for the rate-distortion (RD) optimization process. At coding time, a range
encoder is used to create the block coding bitstream.

● Variational Autoencoder: A variational autoencoder (VAE) is used to capture possible
structure information still present in the block latent representation, which is then used
as a hyperprior for the conditional entropy coding model; the mean-scale hyperprior as
proposed in [Minnen, 2018] was adopted. This way, the entropy coding model
parameters, consisting of the mean and scale of each of the Gaussians, can be more
accurately estimated and adapted for each coded block. In this process, the VAE
generates its own latent representation, which must also be coded and transmitted in
the bitstream as additional side information to the decoder, so that the entropy coding
model parameters can be replicated at the decoder. The VAE has a similar but simpler
design to the AE, with only 3 convolutional layers at the encoder and another 3 at the
decoder. The VAE contains a total of 3760960 trainable parameters.

● VAE Latents Fixed Entropy Coding: Similar to the conditional entropy coding, this
module entropy codes the VAE latent representation. However, it uses a fixed entropy
coding model for all blocks, which is learned during training, instead of an adaptive one
for each block. As all the components of the end-to-end DL coding model are jointly
trained, the additional side information rate is compensated by reducing the rate
associated with the latents, thus optimizing the overall RD performance.

The total number of trainable parameters in the full DL coding model (AE + VAE) is 6605664.

At the decoder side, each block is decoded with the DL coding model shown in Figure 3. The
“Side Info Bitstream” containing entropy coding related metadata is decoded to generate
the entropy coding model parameters used for the current block, so that its “Bitstream”
can finally be decoded.

3.4 DL-based Block Super-resolution
This section presents the optional DL-based Block Super-resolution module. It is important
to notice that it receives the output of the Block Up-sampling module, which means that
the PC is already in the original precision, although sparser. Its goal is to densify the PC,
increasing the reconstructed quality at no rate cost; naturally, some complexity cost is
involved. In practice, the DL SR model expresses how a surface may be densified given a
sparser surface, in this case within a PC block.

The DL-based Block SR module can offer significant RD performance gains, especially for
originally dense and uniform PCs. However, this is not always the case, depending on the
PC content characteristics (e.g., sparsity), as well as the reconstruction quality of the DL-
based codec (whether it contains many coding artifacts or not). For this reason, the SR is
an optional post-processing module which may be activated via the configuration used to
run the software.

The DL SR model architecture is based on the solution proposed in [Akhtar, 2020], and
consists on a 3D CNN shaped as a U-net [Çiçek, 2016], as shown in Figure 4.

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

(a) (b)

Figure 4 DL SR model architecture: (a) Overall SR model; (b) Detail of the IRN block.

The full architecture can be divided into two main processing stages as follows:

● Contracting Path: The first path of the U-net is responsible for extracting features at
different scales. Similarly to the AE in the DL coding model, it combines 3D down-
sampling convolutional layers and IRB blocks, inspired in Inception-ResNet [Szegedy,
2017]. Compared to the DL coding model, the IRB is much simpler and lighter, with fewer
and smaller filter supports (maximum of 3×3×3). On the other hand, the DL SR model is
a much deeper network, with many more convolutional layers and IRB’s. The number of
filters/channels starts from 16 in the first layer, and progressively increases.

● Expanding Path: The second path now successively up-samples the features, but with
an additional task of aggregating the multiscale features extracted by the contracting
path. By considering the features obtained at different scales, this path is able to
accurately predict the occupation of the voxels which were lost due to the down-
sampling process performed at encoder.

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

The total number of trainable parameters in the full DL SR model is 7291488.

3.5 Binarization

The geometry output of the DL-based decoder consists of values in the interval [0, 1] for
each voxel, where each value represents the probability of the given voxel being occupied.
As such, it is necessary to transform these probabilities into binary values which can directly
correspond to the final reconstructed points. A so-called optimized Top-k binarization
approach was adopted for selecting the occupied voxels, in which only the k voxels with the
largest probabilities are selected as points, with k being defined as:

𝑘!"#$% = 𝑁&'()* × 𝛽, (1)

where 𝑁!"#$% is the number of input points of the original block (known), and β is a factor
selected at the encoder. This β factor is optimized at the encoder by determining the value
which results in the best reconstructed quality, using a combination of geometry and colour
quality metrics such as PSNR-D1 or PSNR-D2 and PSNR-YUV or PSNR-RGB, respectively;
naturally, the best value of 𝑘&'()* needs to be coded in the bitstream to be available to the
decoder.

Furthermore, the occupation of each octant of the block is determined and transmitted to
the decoder so that only voxels inside originally occupied octants can be selected as
occupied voxels.

Similarly to the DL coding model, the output of the DL SR model is a block of occupied voxel
probabilities, thus also requiring some binarization process. To maximize the RD
performance, two binarization approaches may be selected with different implications on
the encoder complexity:

● The same optimized Top-k approach used after the DL coding model may be applied;
however, this requires SR optimization during the encoding process, i.e. performing SR
at the encoder side, which can considerably increase the encoding time and complexity.

● Alternatively, the same binarization multiplying factor β determined for the DL coding
model optimization can be applied, at no increased encoding complexity cost. While it
can still bring a good RD performance, notably for dense PCs, this approach is not
optimal.

In both these approaches, only a binarization parameter 𝑘+,, computed as in Equation (1),
needs to be transmitted in the bitstream together with the 𝑘&'()* parameter, as well as the
octant occupation code (Binarization Parameters in Figure 1).

4 DL Model Training
This section describes the important training processes for the DL coding and SR models.

4.1 Coding Model Training

In order to achieve efficient compression performance, the DL coding model from Figure 3
was trained by minimizing a loss function that considers both the distortion of each decoded
block, compared to the input block, as well as its estimated coding rate. For this purpose,

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

the loss function follows a traditional formulation involving a Lagrangian multiplier, λ, and
is given by:

𝐿𝑜𝑠𝑠	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 + 	𝜆 × 𝐶𝑜𝑑𝑖𝑛𝑔	𝑟𝑎𝑡𝑒. (2)
DL-based codecs typically require training a different DL coding model for each target RD
point, which is accomplished by varying the λ parameter in Equation (2). A total of 6 models
were trained, using λ = 0.000125, 0.00025, 0.0005, 0.001, 0.002, and 0.004. Models were
trained sequentially, from the smallest to the largest λ (i.e., highest to lowest rate) [Quach,
2020]. This means that only the first model (highest rate) was trained with no particular
initialization, whereas each subsequent DL coding model was initialized with the weights of
the previous one. This approach allows for a significant reduction in the total training time
of the remaining models since their training is, in practice, a fine-tuning for the next target
RD trade-off. Furthermore, as each subsequent DL coding model becomes more and more
refined, this sequential approach can also offer a better RD performance for the latter
models, when compared to the regular approach of training each model independently, i.e.,
without initialization.

Training Distortion Metric

Being a joint PC geometry and colour codec, the distortion of both geometry and colour
information is measured, with the total distortion being given by:

𝑇𝑜𝑡𝑎𝑙	𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = (1 − 𝜔) × 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛+$",$*-. + 𝜔 × 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛!"/")- 	, (3)

where ω is a weight that leverages the importance of colour over the geometry. Although
more intensive studies may be performed on the best weight, ω=0.5 has been assumed.

As described in Section 3.1, a voxel-based representation was adopted to process the PCs.
Thus, regarding geometry, for the DL coding model the input data is a block of binary voxels,
and the decoded data represents a probability score between ‘0’ and ‘1’ for each voxel,
i.e. the probability of each voxel being occupied. While at encoding and decoding time
binarization is eventually applied, it cannot be performed during training as this is not a
differentiable operation. This means that the geometry distortion metrics used for testing
(D1, D2) cannot be used for training since they require binarization.

Considering this, the geometry distortion (𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛-)'.)%/0) is measured as the average
voxel level distortion, computed as a binary classification error using the so-called Focal
Loss (FL) [Lin, 2017], defined as follows:

𝐹𝐿(𝑣, 𝑢) = E −𝛼(1 − 𝑣)0 log 𝑣 , 𝑢 = 1
−(1 − 𝛼)𝑣0 log(1 − 𝑣) , 𝑢 = 0	, (4)

where u is the original voxel binary value and v is the corresponding decoded voxel
probability value. A weight parameter, α, is used to control the class imbalance effect since
the number of ‘0’ valued voxels in a block is vastly superior to the number of ‘1’ valued
voxels. The parameter γ allows increasing the importance of correcting misclassified voxels
in relation to improving the classification score of already correct voxels. For the used
models, the values α=0.7 and γ=2 for these two parameters were found to be appropriate.

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

As previously stated, the distortion function must be differentiable and thus the colour
distortion metrics used for testing (MSE-Y, MSE-RGB) cannot be used. Thus, for the colour
distortion (𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛&'1'$/), a voxel-wise mean squared error (MSE) was defined, as follows:

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛!"/")- =
1

𝑁&'()*
L

(𝑅& − 𝑅&1)2 + (𝐺& − 𝐺&1)2 + (𝐵& − 𝐵&1)2

3
&	∈	5!"#$%

	 , (5)

where 𝑅! , 𝐺! , 𝐵! are the colour values of the occupied voxel i in the input block, 𝑅!2, 𝐺!2, 𝐵!2 are
the colour values of the collocated voxel in the decoded block, and 𝑁!"#$% is the number of
occupied voxels in the input block.

Training Coding Rate

The coding rate is estimated during training as the entropy of the AE and VAE latent
representations, considering the computed conditional and fixed entropy coding models,
respectively. Since the latent representation contains both the compressed geometry and
colour representation without separation between them, only the total (geometry + colour)
rate is considered.

Trained Models

The DL coding model is trained using a selection of the static PCs listed in the JPEG Pleno
PCC Common Training and Testing Conditions (CTTC) [wg1/N100112]. As detailed in Table
1, the selected PCs were down-sampled to a lower precision (if necessary) according to their
sparsity, and then partitioned into blocks of size 64×64×64, as described in Section 3.1. The
blocks with less than 500 ‘occupied’ voxels have been removed to avoid the negative effect
on the training due to the increased class imbalance caused by such low point count blocks.
In total, 35861 blocks were used for training and 3822 blocks for validation.

The PCs were split into training and validation sets, with the validation set being used for
early stopping of the training process, in order to prevent overfitting. For early stopping, a
patience of 5 epochs was defined, meaning that the training only stopped when the
validation loss did not decrease further after 5 epochs.

Implementation and training were done in PyTorch version 1.12, using the CompressAI
library version 1.2 [Bégaint, 2020] for entropy coding. For training, the Adam algorithm
[Kingma, 2015] was used with a learning rate of 10-4 and minibatches of 16 blocks.

Table 1 - Dataset for training and validation of the DL coding model.

 Point Cloud Frame
Original

Precision
Original
Points

Training
Precision

Training
Points

Blocks
(643)

Training

Loot 1200 10 805285 10 805285 192
Redandblack 1550 10 757691 10 757691 166
Soldier 690 10 1089091 10 1089091 235
Thaidancer viewdep 12 3130215 11 1007956 222
Andrew10 1 10 1276312 10 1276312 224
David10 1 10 1492780 10 1492780 277
Sarah10 1 10 1355867 10 1355867 258

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

The20sMaria 600
Not

voxelized
10383094 11 3681165 669

UlliWegner 1400
Not

voxelized
879709 10 537042 150

Basketball_player 200 11 2925514 11 2925514 682
Exercise 1 11 2391718 11 2391718 530
Model 1 11 2458429 11 2458429 561
Mitch 1 11 2289640 11 2289640 821
ThomasSenic 170 11 2277443 11 2277443 749
Football 1365600 11 1021107 11 1021107 160
Façade 15 - 14 8907880 12 6834258 2517
Façade 64 - 14 19702134 12 12755151 3539
Egyptian_mask - 12 272684 9 269739 141
Head_00039 - 12 13903516 12 13903516 9218
Shiva_00035 - 12 1009132 10 901081 282
ULB_Unicorn - 13 1995189 10 1588315 462
Landscape_00014 - 14 71948094 12 15270319 3069
Stanford_Area_2 - 16 47062002 12 19848824 4178
Stanford_Area_4 - 16 43399204 12 24236048 6559

Validation

Boxer viewdep 12 3493085 11 3056129 915
Dancer 1 11 2592758 11 2592758 604
Façade 09 - 12 1596085 11 1560834 836
Frog_00067 - 12 3614251 11 3321097 1467

4.2 SR Model Training
The training of the DL SR model did not follow the same approach as for the coding model
due to its different purpose. Each block was first down and up-sampled (by the target scaling
factor) using the down-sampling and up-sampling approaches described in Section 3.2; this
process allows obtaining a sparser block although at the same original precision. The SR
training data were thus pairs of sparse and corresponding original blocks, where the former
served as the input to the DL SR model, and the later served as the ground truth when
measuring the SR training loss. Note that, just for training purposes, there was no coding
involved.

Given that SR is a post-processing module which has no impact on the coding rate, the DL
SR model was trained simply considering the distortion between the mentioned blocks,
computed using the loss function in Equation (3), with the same metrics and parameter
values described in the previous section.

At testing time, a single DL SR model is used for all the rates, unlike the DL coding model.
As such, the only dependency is the sampling factor, with two DL SR models being trained
in total, one considering a sampling factor of 2 and another considering a sampling factor
of 4. For sampling factor 2, the training PC dataset was divided into blocks of size 64×64×64,
just as for the DL coding model; however, for sampling factor 4, the training PC dataset was
divided into blocks of size 128×128×128 instead, resulting in a total of 9699 blocks for
training and 1078 blocks for validation.

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

Implementation and training were done in PyTorch version 1.12. For training, the Adam
algorithm [Kingma, 2015] was used with a learning rate of 10-4, and minibatches of 2 and 16
blocks for sampling factor of 2 and 4, respectively.

5 Coding Configurations
In DL-based coding solutions, it is typical to train a DL coding model for a specific target RD
trade-off. However, such approach becomes impractical when aiming to achieve a given
bitrate at testing time, without the possibility of training new models. As such, the VM codec
avoids this issue by allowing a more flexible coding configuration at testing time, containing
several parameters, namely:

● DL coding model: Six DL coding models are available, which were trained for different
RD trade-offs, spanning a wide range of rates.

● Sampling factor (SF): The sampling factor can be defined to allow reaching lower rates
(by increasing its value) or to improve coding performance for sparser PCs.

● Super-resolution (SR): The SR module can be activated optionally, with the goal to
improve the reconstruction quality when adopting a sampling factor larger than 1.

● Coding block size (BS): The size of the 3D block coding units can be selected, allowing
not only a finetuning of the rate, but also a trade-off between performance and random
access granularity.

● Quantization step (QS): The quantization step parameter applied to the latents can be
used for finetuning the target rate for each PC after selecting a specific DL coding model.

Considering these coding parameters and the desired target rates, it is possible to select
the coding configurations which allow reaching the target rates for each PC.

6 References

[wg1/N100097] ISO/IEC JTC1/SC29/WG1 N100097, “Final Call for Proposals on JPEG Pleno
Point Cloud Coding” Online Meeting, January 2022.

[wg1/M96005] A. F. R. Guarda, N. M. M. Rodrigues, M. Ruivo, L. Coelho, A. Seleem, F.
Pereira, “IT/IST/IPLeiria Response to the Call for Proposals on JPEG Pleno Point Cloud
Coding” ISO/IEC JTC1/SC29/WG1, Document M96005, Online Meeting, July 2022.

[Ballé, 2018] J. Ballé, D. Minnen, S. Singh, S. J. Hwang and N. Johnston, “Variational Image
Compression with a Scale Hyperprior,” International Conference on Learning
Representations (ICLR’2018), Vancouver, Canada, Apr. 2018.

[Szegedy, 2017] C. Szegedy, S. Ioffe, V. Vanhoucke and A. Alemi, “Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning,” AAAI Conference on Artificial
Intelligence, San Francisco, CA, USA, Feb. 2017.

[Minnen, 2018] D. Minnen, J. Ballé and G. Toderici, “Joint Autoregressive and Hierarchical
Priors for Learned Image Compression,” Advances in Neural Inf. Process. Syst., Montreal,
Canada, Dec. 2018.

 ISO/IEC JTC1/SC29/WG1 N100367
 97th Meeting – Online – 24-28 October 2022

[Akhtar, 2020] A. Akhtar, W. Gao, X. Zhang, L. Li, Z. Li and S. Liu, “Point Cloud Geometry
Prediction Across Spatial Scale using Deep Learning,” IEEE Int. Conf. on Visual
Communications and Image Processing (VCIP), Hong Kong, China, Dec. 2020.

[Çiçek, 2016] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox and O. Ronneberger, “3D U-
Net: Learning Dense Volumetric Segmentation from Sparse Annotation,” Int. Conf. on
Medical Image Computing and Computer-Assisted Intervention (MICCAI), Athens, Greece,
Jun. 2016.

[Quach, 2020] M. Quach, G. Valenzise and F. Dufaux, “Improved Deep Point Cloud Geometry
Compression,” IEEE Int. Workshop Multimedia Signal Process., Tampere, Finland, Sep. 2020.

[Lin, 2017] T. Lin, P. Goyal, R. Girshick, K. He and Piotr Dollár, “Focal Loss for Dense Object
Detection,” IEEE International Conference on Computer Vision (ICCV’2017), Venice, Italy,
Oct. 2017.

[wg1/N100112] ISO/IEC JTC1/SC29/WG1 N100112, “JPEG Pleno Point Cloud Coding Common
Training and Test Conditions v1.1”, Online, January 2022.

[Bégaint, 2020] J. Bégaint, F. Racapé, S. Feltman, A. Pushparaja, “CompressAI: A PyTorch
Library And Evaluation Platform For End-To-End Compression Research,” arXiv:2011.03029
[cs.CV], Nov. 2020.

[Kingma, 2015] D. P. Kingma and J. Ba, “Adam: a Method for Stochastic Optimization,”
International Conference on Learning Representations (ICLR’2015), San Diego, CA, USA, May
2015.

