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JPEG DNA COMMON TEST CONDITIONS 
version 2.0 

1 Scope 

The scope of JPEG DNA is the creation of a standard for efficient coding of images that considers 
biochemical constraints and offers robustness to noise introduced by the different stages of the storage 
process that is based on DNA synthetic polymers. 

This document describes the Common Test Conditions (CTC) for the JPEG DNA image coding 
experiments. The main objectives of this document are: 

● Define the common dataset that should be used in the evaluation of image coding solutions for 
storage on DNA support. 

● Define the anchors (for direct encoding and transcoding) that should be used to comparatively 
evaluate the performance of image coding solutions for storage on DNA support. 

● Define the coding conditions, in terms of source coding, error correction and biochemical noise 
simulators, as well as the target rates and compression ratios that anchors or alternative image 
coding solutions for storage on DNA support should demonstrate. 

● Define the performance metrics for quality assessment that can be used to reliably evaluate the 
decoded images obtained from image coding solutions that produce streams in ACTG. 

● Define the subjective evaluation procedure to perceptually evaluate all decoded images quality, 
namely the anchors and image coding solutions that produce ACTG. 

In the current form, these common test conditions should be used to evaluate different aspects of image 
coding for storage on DNA support. The CTC is defined according to the use cases and requirements 
identified [17] and should be followed in all the experiments carried out by participants. 
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2 JPEG DNA Dataset 

The JPEG DNA dataset is used for the performance evaluation of image coding solutions for storage 
on DNA support. This JPEG DNA dataset is freely available to all JPEG DNA proponents which will 
be submitted in the framework of exploration experiments. The JPEG DNA dataset is organized 
according to: 

● Uncompressed dataset: The uncompressed dataset provides a set of 10 images to be used 
during the coding and decoding as defined in relevant exploration experiments.  

● JPEG compressed dataset: The JPEG compressed dataset provides a set of already 
compressed images with 10 different quality levels to be used during transcoding as defined in 
relevant exploration experiments.  

The diversity of the images in the JPEG DNA dataset is high, namely in terms of their characteristics, 
such as content, color, and spatial resolution.  A preview of the images part of the JPEG DNA dataset 
is provided in Figure 1. 

 

 

Figure 1: JPEG DNA uncompressed dataset 
 

The uncompressed datasets have the following characteristics: 

● Contents - object, human portrait, food, computer-generated image, animal, a scene with water, 
a night scene, fabric/fine texture, landscape, and buildings. 

● Format – PNG images (RGB color components, non-interlaced), JPEG 1 (including progressive 
and hierarchical modes), JPEG 2000, and JPEG XL compressed. 

● Spatial resolution – from 560x888 to 2592x1946 pixels. Detailed information on the different 
content and resolutions is provided in Table 1.  
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IMAGE NUMBER CONTENT RESOLUTION 
(pixels) 

00001 Object 1192x832 

00002 Human face 853x945 

00003 Food 945x840 

00004 Computer-generated  2000x2496 

00005 Animal 560x888 

00006 Water 2048x1536 

00007 Night scene 1600x1200 

00008 Fabric/fine texture 1430x1834 

00009 Landscape 2048x1536 

00010 Buildings 2592x1946 

Table 1: Summary of the characteristics of the JPEG DNA uncompressed dataset 

 
 

The JPEG DNA dataset is available for download through FTP using the following credentials: 

 
Protocol: FTP 

FTP address: tremplin.epfl.ch 

Username: jpegdna@mmspgdata.epfl.ch 

Password: fT76Dl 

FTP port: 21 

Folder name: 04-2023 
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The uncompressed dataset is available in folder ‘uncompressed’, while the JPEG compressed dataset 
is available in folder ‘JPEG compressed’. 

 

 

For the JPEG compressed dataset, the following naming convention is used: 

 
<CODEC>_<IMG NUMBER>_<WxH>_<QUALITY> 

 

where <CODEC> can be ‘JPEG-1’ or ‘JPEG-2000’, and  <QUALITY> is a number between 1 and 10, 
where 1 indicates the best quality and 10 the worst quality. 

3 Evaluation Procedure 

Objective and subjective quality evaluation will be performed by at least two independent 
organizations, following well-established procedures, and based on the decoded test images provided 
by each proponent. Proponents may perform encoding in any color space representation, but the input 
of the encoder and the output of the decoder must be in the PNG (in Y or in RGB color space) format 
as defined in the datasets. Objective image quality will be measured with luminance and color-based 
metrics and the RGB decoded images will be used for subjective quality evaluation. 

4 Target Rates and Compression Ratios 

The rate will be reported in the following way: 

● The rate is expressed by the number of nucleotides (nts) per pixel (nts/pixel). 

An implementation of these rates can be found at: https://gitlab.com/wg1/jpeg-dna/jpeg-dna-metrics. 

5 Objective Quality Evaluation 

Objective quality testing shall be performed by computing several quality metrics, including PSNRY, 
PSNRYUV, MS-SSIM, IW-SSIM, VMAF, VIFP, PSNR-HVS-M, NLPD and FSIM, between 
compressed and original images, at the target rates mentioned in the previous section. This section 
defines the objective image quality metrics that will be used for the assessment of image coding 
solutions. The reference implementation of PSNRY, PSNRYUV can be found at 
https://gitlab.com/wg1/jpeg-dna/jpeg-dna-metrics, and all other objective quality assessment metrics 
are available at: https://gitlab.com/wg1/jpeg-ai/jpeg-ai-qaf. 
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5.1 MS-SSIM Definition and Computation 
Multi-Scale Structural SIMilarity (MS-SSIM) [1] is one of the most well-known image quality 
evaluation algorithms and computes relative quality scores between the reference and distorted images 
by comparing details across resolutions, providing high performance for learning-based image codecs. 
The MS-SSIM [1] is more flexible than single-scale methods such as SSIM by including variations of 
image resolution and viewing conditions. Also, the MS-SSIM metric introduces an image synthesis-
based approach to calibrate the parameters that weight the relative importance between different scales. 
A high score expresses better image quality.  

5.2 IW-SSIM Definition and Computation 
Information Content Weighted Structural Similarity Measure (IW-SSIM) [2] is an extension of the 
structural similarity index based on information content weighted pooling. This metric assumes that 
when natural images are viewed, pooling should be made using perceptual weights proportional to the 
local information content. Moreover, advanced statistical models of the natural images are employed 
to derive the optimal weights combined with multiscale structural similarity measures to achieve the 
best correlation performance with subjective scores from well-known databases. 

5.3 VMAF Definition and Computation 
The Video Multimethod Assessment Fusion (VMAF) metric [3] developed by Netflix is focused on 
artifacts created by compression and rescaling and estimates the quality score by computing scores 
from several quality assessment algorithms and fusing them with a support vector machine (SVM). 
Even if this metric is specific to videos, it can also be used to evaluate the quality of single images and 
has been proven to perform reasonably well for learning-based image codecs. Since the metric takes 
as input raw images in the YUV color space format, the PNG (RGB color space) images are converted 
to the YUV 4:4:4 format using FFMPEG (BT.709 primaries). A higher score of this metric indicates 
better image quality.  

5.4 VIF Definition and Computation 
Visual Information Fidelity (VIF) [4] measures the loss of human-perceived information in some 
degradation processes, e.g. image compression. VIF exploits the natural scene statistics to evaluate 
information fidelity and is related to the Shannon mutual information between the degraded and 
original pristine image. The VIF metric operates in the wavelet domain and many experiments found 
that the metric values agree well with the human response, which also occurs for learning-based image 
codecs. A high score expresses better image quality. 
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5.5 PSNR-HVS-M Definition and Computation 
The PSNR-HVS-M [5] is a simple and effective quality model which uses DCT basis functions and is 
based on the human visual system (HVS). The model operates with an 8x8 pixel block of an image and 
calculates the maximum distortion that is not visible due to the between-coefficient masking. The 
proposed metric, PSNR-HVS-M, considers the proposed model and the contrast sensitivity function 
(CSF).  

5.6. PSNR-Y and PSNR-YUV Definition and Computation 

The PSNR between the original component, I, and the reconstructed component, I’, (both n-bit) is 
computed as follows: 

𝑃𝑆𝑁𝑅 = 10		𝑙𝑜𝑔!"	
(2$ − 1)
𝑀𝑆𝐸 	

where the MSE between the two M×N images, I and I’, is given by: 
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Once the PSNR-Y, PSNR-U and PSNR-V are individually computed, PSNR-YUV is computed using:  

𝑃𝑆𝑁𝑅 − 𝑌𝑈𝑉 	= 	 ,	-.)/&0	1	-.)/&2	1	-.)/&3
4

  

5.7 NLPD Definition and Computation 
The Normalized Laplacian Pyramid Distance (NLPD) is an image quality metric [14] based on two 
different aspects associated with the human visual system: local luminance subtraction and local 
contrast gain control. NLPD exploits a Laplacian pyramid decomposition and a local normalization 
factor. The metric value is computed in the normalized Laplacian domain, this means that the quality 
of the distorted image relative to its reference is the root mean squared error in some weight-normalized 
Laplacian domain. A lower score expresses better image quality. 

5.8 FSIM Definition and Computation 
The feature similarity (FSIM) metric [6] is based on the computation of two low-level features that 
play complementary roles in the characterization of the image quality and reflect different aspects of 
the human visual system: 1) the phase congruency (PC), which is a dimensionless feature that accounts 
for the importance of the local structure and the image gradient magnitude (GM) feature to account for 
contrast information. The color version of the FSIM metric will be used. A high metric value expresses 
better image quality.  
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6 Subjective Quality Evaluation 

To evaluate the selected coding solutions, a subjective quality assessment methodology should be used. 
Subjective quality evaluation of the compressed images will be performed on the test dataset.  

The Double Stimulus Continuous Quality Scale (DSCQS) methodology will be used, where subjects 
watch side by side the original image and the impaired decoded image, and both are scored on a 
continuous scale. This scale is divided into five equal lengths, which correspond to the normal ITU-R 
five-point quality scale, notably Excellent, Good, Fair, Poor, and Bad.  This method requires the 
assessment of both original and impaired versions of each test image. The observers are not told which 
one is the reference image, and the position of the reference image is changed in pseudo-random order. 
The subjects assess the overall quality of the original and decoded images by inserting a mark on a 
vertical scale. The vertical scales are printed in pairs to accommodate the double presentation of each 
test picture. 

The subjective test methodology will follow BT500.13 [7], and a randomized presentation order for 
the stimuli, as described in ITU-T P.910 [8], will be used; the same content is never displayed 
consecutively. There is no presentation or voting time limit. A training session should be organized 
before the experiment to familiarize participants with artifacts and distortions in the test images. At 
least, three training images will be used before actual scoring. 

To perform the tests, a semi-controlled crowdsourcing setup framework and/or a more controlled lab 
environment procedure can be used to show the images according to the DSCQS methodology. The 
semi-controlled crowdsourcing setup has been proven in the past to be reliable, i.e. maintains a low 
variance of the scores [9]. The QualityCrowd2 [10] software and Amazon Mechanical Turk (or other 
similar platforms) will be used for crowdsourcing. The number of subjects will be large enough in 
order to conclude in a statistically meaningful fashion.  

7 Biochemical Coding Constraints 

DNA data storage is a very error-prone process. The different components of the biochemical process 
for DNA data storage, especially sequencing, generate a lot of errors. The error rates of these processes 
depend on the different technologies adopted by each sequencing machine but also largely depend on 
the DNA code that should be embedded in a molecule. Some patterns and other characteristics of the 
DNA codes have been identified as error-generating and should be avoided to make the entire data 
storage process functional and more reliable. This section describes those constraints that will be 
considered during this call for proposals. All codecs submitted to JPEG DNA call for proposals should 
comply with these constraints. Additional constraints will be considered after the conclusion of the call 
and in the framework of core experiments when a starting point has been decided. 
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To check codec compliance with the biochemical constraints, a series of compliance verification 
software should be run on the encoded streams. A detailed set of instructions on how to use such 
software and how to report the results will be provided to those proponents who will pre-register. 
Likewise, proponents will be provided with the necessary software and templates to use for their 
submissions. 

The constraints that will be considered are listed below: 

 

● Strand length limitations 

- Definition 
Since the handling of very long strands of DNA during synthesis can be challenging, the DNA 
codestreams need to be cut into shorter strands. A different DNA molecule will then be synthesized for 
each short strand which is also referred to as an oligo. The submitted codestream should therefore 
consist of a collection of strands of a maximum fixed length. Moreover, a strand index should be 
embedded in the strand’s codestream to denote each strand’s order to correctly reassemble the entire 
data stream for an image. 
- Criterion 
A satisfactory strand length should lie in an interval of 100 to 300 nucleotides. The maximum strand 
length is generally fixed for all the coded data for easy decoding. 
For performance testing, a commonly accepted length for the encoded strands is fixed to a maximum 
of typically 200 nts. The final instructions provided to pre-registered proponents will inform them 
about the exact value used in the assessment of proposals. 
- Scope 

This criterion should be respected for every strand of the submitted codestream. 

 

● Homopolymer runs 

- Definition 
A homopolymer run is the repetition of the same nucleotide several times in a strand. It is important to 
limit the number of such repetitions to produce stable molecules. Different sequencing technologies 
can tolerate different maximum lengths for homopolymers. 
- Criteria 
As a baseline, without any prior assumption on the sequencing technologies that will be used, the 
encoding should optimally respect the minimum threshold of tolerance so as to ensure the reliability of 
the decoding process. Therefore, all submitted encoders should not contain codewords with  
homopolymers of length greater than typically 3 and avoid generating homopolymers greater than 
typically 7 during encoding. The final instructions provided to pre-registered proponents will inform 
them about the exact values used in the assessment of proposals. 
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- Scope  
These criteria should be respected in the DNA code, in the combination of the different DNA 
codewords, and in the different headers, indexes, and identifiers. A specific analysis software will be 
provided for checking the compliance of submitted codecs with the homopolymer constraints used in 
the assessment of the proposals. 
 

 

● GC content balance 

- Definition 

The GC content describes the usage of the G and C bases in the strand. More specifically, the GC 
content describes the percentage of all the bases in the code that are either a G or a C and is given by 
the following formula: 

𝐺𝐶_𝑐𝑜𝑛𝑡𝑒𝑛𝑡	 = ∑!"#0
$(&["],{+,,})

!
	  

with 𝑐[𝑖] denoting the nucleotide at index 𝑖 in the strand 𝑐, 𝛿(𝑐[𝑖], {𝐺, 𝐶}) =
{1	𝑖𝑓	𝑐[𝑖]	𝑖𝑛	{𝐺, 𝐶}, 0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} and 𝑙 referring to the length of the strand. 

- Criterion 

The typically acceptable interval in which the GC content should fall is between 40% and 60%. When 
over 50%, the error rate for nanopore sequencers significantly increases in some methods. Therefore a 
better interval could be between 40% and 50% [15]. The final instructions provided to pre-registered 
proponents will inform them about the exact value used in the assessment of proposals. 

- Scope 

This criterion should be respected for every strand of the submitted codestream. 

 

● Repetition of patterns 

- Definition 
A short pattern is a sequence of nucleotides with a minimum length of 3 and a maximum length of 5 
which is repeated many times consecutively in a strand.  
The desired strand should be free from repetitions of patterns. For example, the strand ATCATCATC, 
where pattern ATC is repeated several times is not acceptable. Patterns should not repeat in any DNA 
strand as sequencing technologies perform much better when increasing variability in the codestream, 
it is important that the submitted encoders do not generate repetitions of the same short patterns [16]. 
- Criterion 
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Any pattern of length between typically 3 to 5 nucleotides should not be repeated consecutively more 
than typically 4 times. The final instructions provided to pre-registered proponents will inform them 
about the exact values used in the assessment of proposals. 
- Scope 

This criterion should be respected for every strand of the submitted codestream. 

8 Errorless Anchors Generation 

8.1 Transcoder Anchor 1 
Compressing using legacy JPEG and followed by Goldman DNA coding [12] 

The anchor 1 describes a coding method that consists in segmenting an already compressed JPEG 
bitstream into bytes and encoding each byte separately. The byte-wise encoder is composed of two 
blocks: 

● The first block is a ternary Huffman encoder that considers all the possible values of a byte as 
an alphabet. Each byte value has a ternary (written with 0s, 1s and 2s) codeword associated 
with it. The length of the codewords for each byte value will depend on the frequency of 
appearance of that value in the bitstream. The more frequent that value, the shorter its 
corresponding codeword and the less frequent that value, the longer its corresponding 
codeword. 

● The second block is a Goldman encoder: it encodes the ternary bases (0s, 1s and 2s) of the 
ternary Huffman codewords with a rotating {A, T, C, G} alphabet which results in quaternary 
DNA codewords. 

The software implementation of this anchor will be provided to pre-registered proponents. 

8.2 JPEG DNA Benchmark Codec (JPEG DNA BC) Anchor 2 
The JPEG DNA Benchmark Codec in Python is an implementation of the coding algorithm of the same 
name. The main purpose of the JPEG DNA Benchmark Codec is to encode the DCT coefficients into 
DNA quaternary codes instead of binary (see Figure 1) while maintaining a coding strategy as close as 
possible to the legacy JPEG standard. This work has been published in [11]. First, a quantization is 
applied, followed by a zigzag scan, resulting in a sequence of integers in which the first element 
represents the DC coefficient, and the following 63 coefficients correspond to AC coefficients. 
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Figure 1: The JPEG DNA Benchmark codec. 

 

The software implementation of this anchor will be provided to pre-registered proponents. 

8.3 JPEG DNA BC Transcoder Anchor 3 
Existing JPEG files can be losslessly transcoded to JPEG DNA BC and vice-versa. 

The software implementation of this anchor will be provided to pre-registered proponents. 

9 Experimentation Workflow  
 
This section defines a generic procedure to conduct experiments on any codec for DNA data storage, 
that goes beyond what is assessed in the evaluation of submissions and describes those elements in the 
workflow that will be evaluated. The general workflow of those experiments is proposed in figure 2 
and is composed of different tools that deal with specific processes. The main components of this 
workflow are:  

● The codec (that is able to both encode the input image into a pool of formatted DNA sequences 
called strands and decode a pool of formatted strands into an image),  

● The noise model (a simulator that alters an input pool of formatted strands by introducing errors 
– insertions, deletions, substitutions – approximating the behavior of the real biochemical 
processes – synthesis, storage, amplification, sequencing –), 

● The filtering system or strand selector, that, from the noised strands, discards those strands that 
contain too many errors, 

● The consensus, that from a set of erroneous strands will generate a pool of strands most likely 
to be those encoded. 

For each process in each component, it is important to identify the external parameters that need to be 
adjusted to conduct thorough experiments. They are: 

● The coding rate, determined during the encoding process, 
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● The length of the formatted strands, and the primers used for the strands during formatting, 
● The noise level for all the components of the noise model (synthesis, storage degradation, 

amplification, and sequencing). 
 
In the context of this call for proposals, only the portion of the workflow with blue components 
is evaluated. It is, however, the intention of the JPEG standardization committee to set up various 
core experiments in order to evaluate the rest of the workflow after the selection of a starting 
point for a verification model.  
  

 
Figure 2: General workflow for image coding/decoding simulations. 
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