ISO/IEC JTC 1/SC 29/WG 1
(ITU-T SG16)

Coding of Still Pictures

JBIG
Joint Bi-level Image Experts Group

JPEG
Joint Photographic Experts Group

TITLE: Draft Call for Proposals on Digital Media Storage on DNA Support

SOURCE: Requirements Subgroup

PROJECT: JPEG DNA Exploration

STATUS: Draft

REQUESTED ACTION: For information

DISTRIBUTION: Public

Contact:
ISO/IEC JTC 1/SC 29/WG 1 Convener – Prof. Touradj Ebrahimi
EPFL/STI/IEL/GR-EB, Station 11, CH-1015 Lausanne, Switzerland
Tel: +41 21 693 2606, Fax: +41 21 693 7600, E-mail: Touradj.Ebrahimi@epfl.ch
Table of Contents

- Summary
- Introduction
- Scope
- Use Cases and Requirements
- List of Biochemical Coding Constraints
- Timeline
- Submission Composition and Proposals Requirements
 - Submission Elements
 - Submission Registration and Delivery
 - IPR Conditions (ISO/IEC Directives)
 - Contribution to Standardization
- Evaluation Conditions and Processes
- Royalty-free Goal
- Participation and Contacts
- References
- Annex A – Naming convention of files
- Annex B – Template of rate-distortion figures
- Annex C – Pre-registration form
Draft Call for Proposals on Digital Media Storage on DNA Support

● Summary

To be done
1. Introduction

JPEG standards have been used in the storage and archival of digital pictures as well as moving images. The most popular format for storage and archival of digital pictures is the popular legacy JPEG format as described in ISO/IEC 10918 and, in particular, in parts 1, 3, and 5 of the latter standards.

While the legacy JPEG format is widely used for photo storage in SD cards, as well as archival of pictures by consumers, JPEG 2000 as described in ISO/IEC 15444 is used in many archival applications, notably for the preservation of cultural heritage in the form of visual data as pictures and video in digital format. Examples include the Library of Congress, Library and Archives Canada, Chronicling America website, and the Google Library Project. Because of its use in digital cinema, JPEG 2000 is also used for archival of movies in digital form.

In terms of technology, both legacy JPEG and JPEG 2000 formats are based on a transform-quantization-entropy coding pipeline with JPEG using the Discrete Cosine Transform (DCT) and JPEG 2000 using the Discrete Wavelet Transform (DWT), followed by quantization, coefficient reordering, and entropy coding. The legacy JPEG format has been extended to define JPEG XT, as described in ISO/IEC 18477, to include features attractive for archival applications such as lossless coding, while being backward compatible with the popular legacy JPEG format.

The latest JPEG image coding format called JPEG XL, as described in ISO/IEC 18181, also offers a number of attractive features important to archival applications, such as lossless compression and lossless transcoding from legacy JPEG to JPEG XL, resulting in smaller file sizes without numerical loss in the pixel values.

The ongoing effort in JPEG AI to produce a learning-based image coding standard is yet another potential tool that can be used in archival where the content is stored in its original form, but any post-processing such as denoising, super-resolution and enhancements are carried out without impacting the recorded content.

The purpose of this call is to invite proposals in the form of potential technologies that can be used as the starting point of an international standard for coding of digital media images that can best cope with requirements of potential applications of digital media storage on DNA support.
2. **Scope**

The scope of JPEG DNA effort in the creation of a standard for efficient coding of digital media that considers biochemical constraints and offers robustness to noise introduced by the different stages of the storage process that is based on DNA synthetic polymers.

Two main approaches are considered in this call:

1. Transcoding from an existing already compressed image
2. Coding an uncompressed image from scratch

3. **Use Cases and Requirements**

The following use cases have been identified at this moment as potential applications that can benefit from a coding standard for storage on DNA support. The corresponding requirements and more details about each use case can be found in the following document which is accessible from the JPEG website: ISO/IEC JTC 1/SC29/WG1 N100252, REQ "Use Cases and Requirements for DNA-based Media Storage v1.0", 96th Meeting, Online, July 2022 [1].

- Long term media archives and cultural heritage preservation
- Social networks cold media storage
- Preservation of medical images
- Preservation of large-scale repositories of biomedical data: beyond local data storage
- DNA coding for traceability

4. **List of Biochemical Coding Constraints**

The following biochemical coding constraints must be respected for any proposal submitted to this call:

- Strand length limitations
- Homopolymer runs
- GC content balance
- Repetition of patterns
- Reverse complementarity (optional based on criteria defined by the proponent)

More details about the definition of each constraint and their corresponding parameters are available from the following document which is accessible from the JPEG website: ISO/IEC JTC 1/SC29/WG1 N100395, JPEG DNA Common Test Conditions version 1.1, 98th JPEG Meeting, Sydney, Australia, 16-20 January 2023 [2].
5. **Timeline**

The following table summarizes the main milestones regarding the timeline of this call for proposals.

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Dates/Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>98th meeting 14-20 January 2023</td>
<td>Draft CfP</td>
</tr>
<tr>
<td>99th meeting 22-28 April 2023</td>
<td>Final CfP</td>
</tr>
<tr>
<td>10 July 2023</td>
<td>Evaluation of anchors</td>
</tr>
<tr>
<td>10 July 2023</td>
<td>Pre-registration</td>
</tr>
<tr>
<td>100th meeting 15-21 July 2023</td>
<td>Report on evaluation of anchors + suppl. info for proponents</td>
</tr>
<tr>
<td>2 October 2023</td>
<td>Submission deadline for proposals packages by proponents</td>
</tr>
<tr>
<td>6-27 October 2023</td>
<td>Evaluation of proposals</td>
</tr>
<tr>
<td>23 October 2023</td>
<td>Submission deadline for proposals technical descriptions</td>
</tr>
<tr>
<td>28-29 October 2023</td>
<td>Presentation of proposals by proponents</td>
</tr>
<tr>
<td>101st meeting 30 Oct-3 Nov 2023</td>
<td>Report of evaluation of proposals</td>
</tr>
<tr>
<td>102nd meeting January 2024</td>
<td>Working Draft (WD)</td>
</tr>
<tr>
<td>103rd meeting July 2024</td>
<td>Committee Draft (CD)</td>
</tr>
<tr>
<td>104th meeting October 2024</td>
<td>Draft International Standard (DIS)</td>
</tr>
<tr>
<td>2025</td>
<td>International Standard (IS)</td>
</tr>
</tbody>
</table>
6. Submission Composition and Proposals Requirements

6.1. Submission Elements

Proponents are asked to submit a detailed technical description of the entire image codec, as well as encoder and decoder implementations in software, and the decoded test images. The description shall be in either PDF or Word format. Providing insufficient details might jeopardize the selection of the proposed technology for the collaborative phase of the standardization process.

Participants are required to submit materials to validate the performance of their submission according to the procedure outlined below, notably:

- Coded stream of all compressed images. The code stream must respect the biochemical constraints as defined in the [2]. In addition, it must include all information in order to decode the image using the decoder provided by the proponent. Furthermore, it must allow for decoding any specific image from a mixture of oligos stored in a DNA support.
- Decoded images in PNG format according to the convention described in Annex A.
- Executable decoder with instructions on how to run for cross-checking purposes.
- Excel sheet of rate-distortion information based on the template in Annex B.
- Detailed description of the codec including algorithmic description, how the biochemical constraints in Section 4 have been coped with, as well as any further details such as dependency on potential training for codecs relying on machine learning as well as complexity assessment figures such as minimum, maximum and average run times for encoding and decoding of test images by specifying the platform used.

6.2. Submission Registration and Delivery

- Proponents must pre-register by 10 July 2023 by sending an email to the contacts in Section 9 of this document and filling in the form in Annex C.
- Shortly after pre-registration the proponents receive a proponent code for the purpose of anonymization along with instructions on where to access the test images for coding/transcoding, the anchor(s) software, the rate distortion performance of the anchors in an excel sheet, as well as software to compute quality metrics.
- The materials requested in Section 6.1 should be uploaded on the ftp server communicated to registered proponents no later than 2 October 2023.

6.3. IPR Conditions (ISO/IEC Directives)

Proponents are advised that this call is being made in the framework and subject to the common patent policy of ITU-T/ITU-R/ISO/IEC and other established policies of these standardization organizations. The persons named below as contacts can assist potential submitters in identifying the relevant policy information.
6.4. Contribution to Standardization

Proponents are informed that based on the submitted proposals, a standard specification will be created. If they submit a proposal and (part of) the proposed technology is accepted for inclusion in the standard, they will hence have to attend subsequent WG1 meetings and contribute to the creation of the different standard documents. Within this process, evolution and changes are possible as several technologies may be combined to obtain a better performing solution.

If a proposal is selected fully or partially to be considered for the standard, its proponents agree to provide a software for the part that is considered for inclusion in the verification model leading to the standard.

7. Evaluation Conditions and Processes

The JPEG DNA Common Test Conditions (CTC) document [2] defines the test dataset, benchmarking codecs, coding conditions (especially target rates), coding constraints and a set of reliable objective quality metrics and subjective assessment procedures. The JPEG DNA CTC will allow exhaustive evaluation of multiple aspects of the proposed JPEG DNA image codecs and to fully understand their strengths and weaknesses, notably regarding the proposed anchor codecs. A JPEG DNA CTC document was released at the 98th meeting (January 2023) as an output document.

JPEG plans to select technologies to be included in the JPEG DNA standard based on satisfying the JPEG DNA requirements [1] as well as compliance to the JPEG DNA CTC [2], such as target rates, coding constraints.

The evaluation will be carried out based on the results obtained through the evaluation conditions and procedures documented in the JPEG DNA CTC [2]. Several criteria and metrics will be used for the evaluation of submissions and the decision-making process:

- Validation of the quaternary coding constraints. Those proposals that do not comply with constraints may be excluded.
- Subjective quality evaluation of the proposed submission according to the JPEG DNA CTC [2]. The subjective quality evaluation results will be the primary attribute for the decision-making process for those codecs that have been validated as highlighted in the above point.
- Objective quality evaluation with the quality metrics defined in the JPEG DNA CTC [2].
- Complexity evaluation of both encoding and decoding process according to the guidelines defined in the JPEG DNA CTC [2].

8. Royalty-free Goal

The royalty-free patent licensing commitments made by contributors to previous standards, e.g. JPEG 2000 Part 1, have arguably been instrumental to their success. JPEG expects that similar commitments would be helpful for the adoption of a JPEG DNA standard.
9. Participation and Contacts

Proponents must register to the mailing list of the JPEG DNA AHG using instructions below and should attend its online meetings.

To be completed.

Contact list:

Touradj Ebrahimi (JPEG Convenor)
Email: Touradj.Ebrahimi@epfl.ch

Fernando Pereira (JPEG Requirements Subgroup Chair)
Email: fp@lx.it.pt

Thomas Richter (JPEG Image Coding and Quality Subgroup Chair)
Email: thomas.richter@iis.fraunhofer.de

Marc Antonini
Email: am@i3s.unice.fr

● References

• **Annex A – Naming convention of files**

 To be done

• **Annex B – Template of rate-distortion figures**

 To be done

• **Annex C – Pre-registration form**

 To be done
 It should include:

 Category: Transcoding, Coding, both
 Title of the submission and acronym
 Contact(s) email and detailed affiliation + address