Editorial Comments

This is a living document that goes through iterations. Proposals for revisions of the text can be delivered to the editor Peter Schelkens by sending it to Peter.Schelkens@vub.be.

If you have interest in JPEG Pleno Holography, please subscribe to the email reflector, via the following link: http://jpeg-holo-list.jpeg.org.
Contents

1 Scope .. 4

2 Test materials .. 4

3 Definition of performance metrics 6

3.1 Configuration quality metrics 6

3.2 Rate metrics ... 6

3.3 Quality metrics .. 6

3.4 Handling of colour information 9

4 Testing pipeline ... 10

4.1 Pipeline for anchor codecs 10

4.1.1 Introduction .. 10

4.1.2 Propagation to object plane and back-propagation to hologram plane ... 10

4.1.3 Floating-point to integer conversion 14

4.1.4 Anchor codecs 15

4.1.5 Coding conditions 17

4.2 Pipeline for codecs under test 17

4.3 Quality assessment 18

4.3.1 Objective visual quality assessment 18

4.3.2 Subjective visual quality assessment 18

4.3.3 Metrological quality assessment 20
1 Scope

This document describes the JPEG Pleno Holography Common Test Conditions 2.0 for performance assessment of proposals submitted to the Call for Proposals on JPEG Pleno Holography and additionally defined Exploration Studies and Core Experiments. This document can also be considered as a guideline for testing various types of compression algorithms for holographic content. In Section 2, an overview of the test material is provided, summarizing the main properties of the content and download information. Section 3 defines the rate and quality metrics and subsequently discusses the measurement configurations, coding conditions and anchor specifications. Section 4, details image (hologram) and measurement data output configuration. The subjective test procedure is described in Section 5.

2 Test materials

This section describes the currently selected test material selected for JPEG Pleno Holography Call for Proposals (CfP), Core Experiments (CE) and Exploration Experiments (EE). The selection is justified by the diversity of the holograms in terms of intrinsic properties such as complexity and depth of the represented scene. The holograms are chosen to reflect diverse use cases and generation methods (see Table 1). Note that a larger set of reference holograms is retrievable from plenodb.jpeg.org and that the list in Table 1 is to be further expanded with larger and binary holograms and metrological data. These holograms can be classified by their use case into:

- **Holograms for visualization** - These holograms are intended for visualization and printing purposes and feature objects of sizes that are visible by human eye.

- **Microscopy and interferometry holograms** - These holograms are either (1) microscopic measurements of small objects like biological cells and microspheres or (2) metrology holograms that are usually characterized by large resolutions. Apart from static captures, microscopic holograms can also be used for time-lapse recordings and holographic tomography[11].

Holograms can be also classified by their generation method into

- **Computer generated holograms** - These are typically macroscopic holograms that are generated computationally using the principles of light wave propagation. The methods used to generate holograms can be broadly grouped under 4 categories - point cloud based synthesis, triangular mesh based synthesis, layer based synthesis and ray based synthesis [13, 2].

- **Optically captured holograms** - Optically recorded holograms are captured as actual physical measurements obtained typically by modulations of amplitude and phase.
Tab. 1: Floating-point holograms in JPEG Pleno Holography test set and associated parameters. CGH=computer-generated hologram; OCH=optically captured hologram; plenodb.jpeg.org

<table>
<thead>
<tr>
<th>Hologram</th>
<th>Testset</th>
<th>Obj. test</th>
<th>Subj. test</th>
<th>Resolution</th>
<th>Aperture size</th>
<th>Pixel pitch (µm)</th>
<th>Wavelength (nm)</th>
<th>OCH/CGH</th>
<th>Scene depth</th>
<th>Reconstruction distance (mm)</th>
<th>Ref. wave radius R (mm)</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball</td>
<td>Interfere-IV</td>
<td>x</td>
<td>x</td>
<td>2048×16384</td>
<td>2048×2048</td>
<td>3.45</td>
<td>532</td>
<td>CGH Medium</td>
<td>701; (751)</td>
<td>700 396.4; (998.6; 1.6063)</td>
<td>Inf No</td>
<td>No</td>
</tr>
<tr>
<td>CornellBox3 16k</td>
<td>Interfere-IV</td>
<td>x</td>
<td>x</td>
<td>16384×16384</td>
<td>4096×4096</td>
<td>2</td>
<td>633</td>
<td>CGH Medium</td>
<td>250; (220; 228; 269; 286.15)</td>
<td>Inf Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Chess</td>
<td>Interfere-IV</td>
<td>x</td>
<td>x</td>
<td>2048×16384</td>
<td>2048×2048</td>
<td>3.45</td>
<td>532</td>
<td>CGH Deep</td>
<td>496.4; (648.6; 806.3)</td>
<td>700 Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DeepChess</td>
<td>Interfere-IV</td>
<td>x</td>
<td>x</td>
<td>2048×16384</td>
<td>2048×2048</td>
<td>3.45</td>
<td>532</td>
<td>CGH Deep</td>
<td>396.4; (998.6; 1.6063)</td>
<td>998.6 Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Sphere</td>
<td>Interfere-IV</td>
<td>x</td>
<td>x</td>
<td>2048×16384</td>
<td>2048×2048</td>
<td>3.45</td>
<td>532</td>
<td>OCH Medium</td>
<td>960 396.4; (998.6; 1.6063)</td>
<td>960 No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Squirrel</td>
<td>Interfere-IV</td>
<td>x</td>
<td>x</td>
<td>1792×27904</td>
<td>1792×3488</td>
<td>3.45</td>
<td>632.8</td>
<td>OCH Deep</td>
<td>500; (465; 535)</td>
<td>500 No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Biplane16k</td>
<td>Interfere-III</td>
<td>x</td>
<td>x</td>
<td>16384×16384</td>
<td>2048×2048</td>
<td>1</td>
<td>633; 532; 460</td>
<td>CGH Deep</td>
<td>45.5; (37.4; 49.7)</td>
<td>Inf Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Biplane16k</td>
<td>b-com</td>
<td>x</td>
<td>x</td>
<td>16384×16384</td>
<td>2048×2048</td>
<td>0.4</td>
<td>640; 532; 473</td>
<td>CGH Deep</td>
<td>10; (6.58; 13.1)</td>
<td>Inf No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Dices16k</td>
<td>b-com</td>
<td>x</td>
<td>x</td>
<td>16384×16384</td>
<td>2048×2048</td>
<td>0.4</td>
<td>640; 532; 473</td>
<td>CGH Deep</td>
<td>4; (4; 10)</td>
<td>Inf No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>SpecularCar16k</td>
<td>b-com</td>
<td>x</td>
<td>x</td>
<td>16384×16384</td>
<td>2048×2048</td>
<td>0.4</td>
<td>640; 532; 473</td>
<td>CGH Deep</td>
<td>10; (6.8; 12.5)</td>
<td>Inf No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Piano16k</td>
<td>b-com</td>
<td>x</td>
<td>x</td>
<td>16384×16384</td>
<td>2048×2048</td>
<td>0.4</td>
<td>640; 532; 473</td>
<td>CGH Deep</td>
<td>10; (14.6)</td>
<td>Inf Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Ring16k</td>
<td>b-com</td>
<td>x</td>
<td>x</td>
<td>16384×16384</td>
<td>2048×2048</td>
<td>3.45</td>
<td>640; 532; 473</td>
<td>CGH Deep</td>
<td>25; (5.84; 18.94)</td>
<td>Inf Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Ballet8k4k</td>
<td>b-com</td>
<td>x</td>
<td>x</td>
<td>7680×4320</td>
<td>7680×4320</td>
<td>4.8</td>
<td>640; 532; 473</td>
<td>CGH Deep</td>
<td>25; (4.18; 8.69; 20.60; 23.62; 25.51; 33.53)</td>
<td>Inf Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Breakdancers8k4k</td>
<td>b-com</td>
<td>x</td>
<td>x</td>
<td>7680×4320</td>
<td>7680×4320</td>
<td>4.8</td>
<td>640; 532; 473</td>
<td>CGH Deep</td>
<td>25; (4.18; 8.69; 20.60; 23.62; 25.51; 33.53)</td>
<td>Inf Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Astronaut</td>
<td>EmergImg-HoloGrail</td>
<td>x</td>
<td>x</td>
<td>2588×2588</td>
<td>1940×2588</td>
<td>2.2</td>
<td>632.8</td>
<td>OCH Deep</td>
<td>-172 (-160; -165; -170; -175)</td>
<td>Inf No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Horse</td>
<td>EmergImg-HoloGrail</td>
<td>x</td>
<td>x</td>
<td>972×972</td>
<td>972×972</td>
<td>4.4</td>
<td>632.8</td>
<td>OCH Deep</td>
<td>140 (135, 145, 150)</td>
<td>Inf Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Lowiczanka Doll</td>
<td>WUT</td>
<td>x</td>
<td>x</td>
<td>2016×59394</td>
<td>2016×2016</td>
<td>3.45</td>
<td>637; 532; 457</td>
<td>OCH Medium</td>
<td>1060; (1030; 1075)</td>
<td>1060 No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Warsaw Mermaid</td>
<td>WUT</td>
<td>x</td>
<td>x</td>
<td>2010×2530</td>
<td>2010×2010</td>
<td>3.45</td>
<td>632.8</td>
<td>OCH Medium</td>
<td>350; (340; 345; 355)</td>
<td>350 No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Bridge 100k</td>
<td>ETRI</td>
<td>x</td>
<td>x</td>
<td>20800×10800</td>
<td>10800</td>
<td>0.5</td>
<td>637; 532; 457</td>
<td>CGH Deep</td>
<td>41.29</td>
<td>Inf Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Dices 200k</td>
<td>b-com</td>
<td>x</td>
<td>x</td>
<td>100000×10000</td>
<td>100000</td>
<td>0.24</td>
<td>660; 532; 460</td>
<td>CGH Deep</td>
<td>(10; 32.8)</td>
<td>Inf Yes</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
3 Definition of performance metrics

3.1 Configuration quality metrics

The quality metrics to be computed for each type of hologram are shown in Tab. 2. Note that for macroscopic holograms, the PSNR, SSIM and VIFp scores are calculated for different reconstructions of hologram obtained using the reconstruction software (NRSH) mentioned in Section 4.1.2. The depths, viewing positions, aperture sizes and propagation method required for the NRSH software are defined in Table 1 for each test hologram.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Higher precision</th>
<th>Binary</th>
<th>Metrological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hologram plane</td>
<td>Hologram plane</td>
<td>Object plane</td>
<td>Hologram plane</td>
</tr>
<tr>
<td>SNR</td>
<td>Yes</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>PSNR</td>
<td>–</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>SSIM</td>
<td>Yes</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>VIFp</td>
<td>–</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>Hamming distance</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>SNR of first-order wavefield</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>RMSE of retrieved phase</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

3.2 Rate metrics

The bitrate, specified in the test conditions and reported for the experiments with the various codecs, accounts for the total number of bits necessary for generating the encoded file (or files) out of which the decoder can reconstruct a lossy or lossless version of the entire input hologram.

The main rate metric is defined as the number of bits per sample (pixel):

\[
\text{Bitrate} = \frac{\text{Total number of bits}}{\text{Number of samples}}
\]

where the numerator is the total file size of the encoded file and other files containing side information required for decoding in bits and the denominator is the number of samples (pixels) of the input hologram.

Please note that a sample can be complex valued, in this case the number of bits per sample is the sum of the number of bits for the real and imaginary components.

3.3 Quality metrics

The metrics used for evaluating the quality of the compressed holograms is given in Section 4. The measuring configuration to be used is given in Section 3.3 and depends on the type of hologram being compressed.
SNR and PSNR
The Signal to Noise Ratio (SNR) is defined as the ratio of the power of the signal to the power of the noise affecting the quality of the signal, while the Peak Signal to Noise Ratio (PSNR) is defined as the ratio between the maximum possible power of a signal and the power of noise. The SNR (in dB) is calculated on the complex valued wavefield in the hologram plane and is given by

$$SNR = 10 \log_{10} \left(\frac{\sum_{i=1}^{A} \sum_{j=1}^{B} |X[i,j]|^2}{\sum_{i=1}^{A} \sum_{j=1}^{B} |X[i,j] - \hat{X}[i,j]|^2} \right)$$ (2)

where $X[*,*]$ and the lossy signal $\hat{X}[*,*]$ are the reference hologram and compressed hologram respectively.

The PSNR is used for evaluating the quality of reconstructions at the object plane. These real-valued reconstructions with integer bit-depth are obtained from the NRSH software given in Section 4.1.2 and the PSNR (in dB) is given by Eq. (3)

$$PSNR = 10 \log_{10} \left(\frac{AB (2^n - 1)^2}{\sum_{i=1}^{A} \sum_{j=1}^{B} |X[i,j] - \hat{X}[i,j]|^2} \right)$$ (3)

where n is the bit-depth and $X[*,*]$ and the lossy signal $\hat{X}[*,*]$ are the reconstructions of the reference hologram and compressed hologram obtained from NRSH respectively.

Bjøntegaard metric
The Bjøntegaard metric compares the rate-distortion performance of two coding solution across some rate/distortion region by computing the surface area that lies between the rate-SNR/SNR-rate curves of the two codecs, where the rate axis is logarithmically scaled [1].

SSIM
The Structural SIMilarity (SSIM) index is a full-reference perceptual metric to quantify the visual quality degradation measured by perceived change in structural information [17]. For complex valued data, the SSIM is obtained as the mean of the SSIM of the real and imaginary parts. The SSIM index is bounded between -1 to 1 where, values closer to 1 indicate high correlation and better perceptual quality while values closer to -1 indicates negative correlation. For compression, the range of values will lie closely in the range 0 to 1.

VIFp
The Visual Information Fidelity in pixel domain (VIFp) [15] is a faster implementation of the Visual Information Fidelity (VIF) which performs multi-scale analysis in spatial domain instead of originally utilized wavelet domain in VIF. In it’s core, VIF approaches the overall visual process through the human visual system (HVS) as a baseline distortion channel which is added to every input data and models it using a stationary, zero mean, additive white Gaussian noise. Next, the mutual information is calculated between the source model (represented by the natural scene statistics) and the test image after adding the HVS baseline distortion. The value then
is normalized by the value of another mutual information similarly calculated for the reference image. VIF is bounded below by 0, which indicates that all information about the reference image has been lost in the distortion channel. In case of no distortion (reference compared to itself), VIF is exactly unity. However, its upper bound is not limited to 1. For example, in case of a linear contrast enhancement of the reference image that does not add noise to it, will result in a VIF value larger than one.

SNR of first-order wavefield
For off-axis holograms the relevant information is encoded in the first-order wavefield. The fidelity of the compressed first-order wavefield is measured by the signal to noise ratio (SNR) metric given in Eq. (4).

\[
\text{SNR} = 10 \log_{10} \left(\frac{\sum_{u=-B_u}^{B_u} \sum_{v=-B_v}^{B_v} |U_f[u,v]|^2}{\sum_{u=-B_u}^{B_u} \sum_{v=-B_v}^{B_v} |U_f[u,v] - \hat{U}_f[u,v]|^2} \right)
\]

where the demodulated first order wavefield in the frequency domain is denoted by \(U_f[*,*]\) and its compressed version by \(\hat{U}_f[*,*]\) while \([-B_u, B_u]\) and \([-B_v, B_v]\) is the bandwidth of the first-order term.

RMSE of retrieved phase
For quantitative phase imaging, the retrieved phase can provide additional insights on the effect of compression on meterological accuracy in practice. Phase-retrieval is a non-linear process due to the phase unwrapping being performed, which can sometimes introduce strong unwrapping errors even for small errors in the compression. The root mean squared error (RMSE) of the retrieved phase is calculated as shown in Eq. (5)

\[
\text{RMSE} = \sqrt{\sum_{i=L_a}^{L_b} \sum_{j=B_a}^{B_b} \frac{(\Phi[i,j] - \hat{\Phi}[i,j])^2}{(L_b - L_a)(B_a - B_b)}}
\]

where \([L_a, L_b]\) and \([B_a, B_b]\) describes the spatial boundary of the phase functions \(\Phi[*,*]\) and \(\hat{\Phi}[*,*]\) retrieved from the original hologram and the compressed hologram respectively. **Please note that the phase functions refer to the unwrapped phase in radians.**

The phase unwrapping functions to be used is based on efficient multiscale phase unwrapping methodology with modulo wavelet transform [4] applied on the the phase unwrapping via graph cuts (PUMA) algorithm [9].

Hamming distance
For binary holograms \(X[*,*]\), the average Hamming distance between the compressed hologram \(\hat{X}[*,*]\) is given as

\[
H = \frac{1}{AB} \sum_{i=1}^{A} \sum_{j=1}^{B} (X[i,j] \oplus \hat{X}[i,j])
\]

where \(\oplus\) is the XOR operator.
3.4 Handling of colour information

Currently no validated procedures exist to de-correlate colour information in holography. For compression using anchor codecs, the three color channels are compressed independently. For quality evaluation, colour holograms are not converted to another colour space. The quality metrics are computed for each colour channel independently and the arithmetic mean is calculated as well as

\[M = \frac{M_R + M_G + M_B}{3} \]

(7)

where \(M_R, M_G, M_B \) refers to the quality metric for red, green and blue components respectively.
4 Testing pipeline

4.1 Pipeline for anchor codecs

4.1.1 Introduction
Unfortunately, so far no standards have been specified to address coding of holographic content. Hence, only codecs that have originally designed for natural image or binary image content can be deployed as anchor codecs. An additional problem is the fact that these anchor codecs typically do not depict a marvellous rate-distortion performance when directly applied to the hologram itself. Because of this reason two anchor codec pipelines have been devised. In a first pipeline, called the hologram plane coding pipeline, the anchor codec is directly applied to the hologram itself, requiring only a mapping of the typically deployed floating-point in the hologram domain to an integer representation that can be processed by the anchor codec. The second pipeline, the object plane coding pipeline, first the hologram is propagated to the object plane, subsequently converted to integer precision and finally encoded by the anchor codec. Inverting these steps delivers in both cases the decoded hologram, which can then be compared through quality assessment procedures with the original, reference hologram. The different quality assessment procedures deployed are discussed in Section 4.3.

Fig. 1: The anchor codecs are tested in two pipelines, one performing the encoding in the hologram in the hologram plane, the other in the object plane. Visual quality assessment is performed in both planes, except for the subjective visual quality assessment, which is solely performed in the object plane. Metrological data quality is measured directly on the metrological data extracted from the uncompressed (original) and compressed holograms.

Note, compression in object or hologram plane is implemented in the same reference test pipeline software.

4.1.2 Propagation to object plane and back-propagation to hologram plane
To assess the objective and subjective visual quality of a hologram in the object plane, the hologram is reconstructed using the nrsh function from the numerical reconstruction software (NRSH 4.0) specified in document no.WG1M89068 [7].

nrsh.m
The nrsh function generates the reconstructions at specified reconstruction points – viewing
angles and focus planes – as listed in Table 1. It runs in Matlab 2017b (or higher) with the command:

\[
>> [\text{hol_rendered}, \text{clip_min}, \text{clip_max}] = \text{nrsh}(\text{hol}, \text{dataset}, \text{cfg_file}, \ldots \text{rec_dists}, \text{ap_sizes}, \text{h_pos}, \text{v_pos}, \text{clip_min}, \text{clip_max}, \text{name_prefix})
\]

where the input parameters are:

- **hol**: hologram to be reconstructed. It can be a matrix that has been previously loaded in the Workspace, or it can be a path to a folder (provided as character array) (e.g. './holograms/Dices8K/') that contains the file(s) representing the hologram;
- **dataset**: represents the dataset to which the hologram (hol) belongs. It must be one of the following character arrays:
 - bcom8
 - bcom32
 - interfere
 - interfere4
 - emerging
 - wut_disp
 - only when hol is a path to a folder, this parameter can be left empty (with ""), since the dataset will be automatically detected;
- **cfg_file**: path to configuration file. It should be a character vector, e.g. './config_files/bcom/dices8K_000.txt';
- **rec_dists**: reconstruction distance(s) in meters. It can be a single value, or a vector of values;
- **ap_sizes**: synthetic aperture size. If the synthetic aperture declaration is based on angles, it must be a single value (or a vector of values) expressed in degrees. If the synthetic aperture declaration is based on pixel, it must be a \(1 \times n\) cell array, in which every element is a \(1 \times 2\) vector that expresses the aperture size in pixels (height x width); more information can be found in the NRSH user guide;
- **h_pos**: if the synthetic aperture declaration is based on angles, it represents the horizontal angles, in degrees, at which the synthetic aperture will be placed. If the synthetic aperture declaration is based on pixel, it represents the horizontal position at which the synthetic aperture will be placed, expressed in the range [-1, 1] where -1 is the leftmost position, while 1 is the rightmost position; more information can be found in NRSH user guide;
- **v_pos**: if the synthetic aperture declaration is based on angles, it represents the vertical angles, in degrees, at which the synthetic aperture will be placed. If the synthetic aperture declaration is based on pixel, it represents the vertical position at which the synthetic aperture will be placed, expressed in the range [-1, 1] where -1 is the lowermost position, while 1 is the uppermost position; more information can be found in the NRSH user guide;
clip_min: minimal intensity value for reconstruction clipping. It can be a single value or a vector of values. This value is optional: if not provided, it is computed and returned as the minimal numerical reconstruction intensity value after the optional percentile clipping and histogram stretching operations;

clip_max: maximal intensity value for reconstruction clipping. It can be a single value or a vector of values. This value is optional: if not provided, it is computed and returned as the minimal numerical reconstruction intensity value after the optional percentile clipping and histogram stretching operations;

name_prefix: any string such as 'GT' to be used as prefix for the reconstructions; Default: empty string;

and the output parameters:

hol_rendered: reconstruction of the input hologram, returned as unsigned integer image (8 or 16 bpp, according to the value set in the configuration file). Note that in case of multiple reconstructions, hol_image is the last reconstruction performed.

clip_min_out: minimal intensity of the numerical reconstructions. In case of multiple reconstructions, one value per reconstruction is returned.

clip_max_out: maximal intensity of the numerical reconstructions. In case of multiple reconstructions, one value per reconstruction is returned.

The software calculates all possible combinations of rec_dists, ap_sizes, h_pos, v_pos provided as input and performs a reconstruction for each combination of values. If the corresponding functionality is enabled through the configuration file, the reconstructions are saved as MAT files and/or as PNG images (8 or 16 bpp) and stored in the ./figures/ConfigurationFileName/path, where ./ is the root folder of NRSH. The file names are structured as follows:

$name_prefix$_<ConfigurationFileName>_<Hpos>_<Vpos>_<Ap_size>...
<Rec_dist>.{mat,png}

nrshDR.m
The nrshDR function behaves identical to nrsh except for that it adds diffraction limited resizing of the absolute values of the reconstructions, based on Fourier downsampling. See WG1M89038 Minimizing the required viewing resolution of reconstructed holograms with phase space models [3]. It runs in Matlab 2017b (or higher) with the command:

>> [hol_rendered, clip_min, clip_max] = nrshDR(hol, dataset, cfg_file,... rec_dists, ap_sizes, h_pos, v_pos, clip_min, clip_max, name_prefix)

nrsh_video.m
For subjective testing, pseudo-video sequences from multiple reconstruction viewpoints can be created by using the nrsh_video function from the NRSH software 4.0. As a general design
idea: one may specify a single value or an array, with length of the overall viewpoints in their correct sequence, per: rec_dists, ap_sizes, h_pos, v_pos, clip_min, clip_max. The nrsh_video function runs in Matlab 2017b (or higher) with the command:

```matlab
>> function [clip_min, clip_max] = nrsh_video(hol, dataset, cfg_file, ...
   rec_dists, ap_sizes, h_pos, v_pos, clip_min, clip_max, name_prefix, ...
   resize_fun, fps)
```

where the input and output parameters that coincide by name with nrsh, are the same. The behavior of the following input parameter(s) changed as follows:

- **clip_min, clip_max**: Influences any clipping done, prior to optional histogram stretching. Instead of being provided/calculated per viewpoint, the following modes are possible:
 - Mode 1 (default); clip_min + clip_max not provided or both are empty, i.e. []; Compute for first frame percentile clipping value on numerical absolute values. Reuse absolute threshold for all other frames.
 - Mode 2 scalar: clip_min == clip_max; Compute for each frame percentile clipping value on numerical absolute values.
 - Mode 3 scalar: clip_min arbitrary + clip_max > 0; Use repmat on clip_min + clip_max. Clip with same absolute thresholds provided per frame.
 - Mode 4 lists of length N: clip_min arbitrary + clip_max arbitrary; Clip with absolute thresholds provided per frame.

New input parameters are:

- **resize_fun**: Resize/crop/downsampling function to use on abs value of reconstruction. Default: (x) imresize(x, 2048*[1,1], 'bilinear'); If 'LR' or "LR" is provided instead, diffraction-limited reconstruction will be used. Thereby, the maximal resolution will be calculated using min(wlen), min(zrec), max(ap_sizes).
- **fps**: Frame rate of final video. Default: fps = 10.

Only clip_min, clip_max may be returned as output arguments to obtain absolute clipping thresholds from the ground truth video sequence.

The software calculates per specified viewpoint a reconstruction, resizes/crops/downsamples it using resize_fun and generates subsequently a video using `ffmpeg -c:v libx264/AVC -qp 0`. The video file using is written to the same folder as the figures of nrsh, i.e. ./figures/ConfigurationFileName/. A log file is written to the same folder. Temporary frames in this folder are removed after video generation. The file names of intermediate frames are structured as follows:

```matlab
['f' num2str(viewpointId, '%04.0f') '.mat']
```

The video filename is formatted as:
<name_prefix>_<ConfigurationFileName>_nFrames<#Frames>_at<fps>FPS<suffix>.mp4

where suffix='__LR' in case of diffraction limited reconstructions and suffix remains empty otherwise.

nrsh_complex.m
For object plane coding, the given hologram is propagated to the plane of object by using the nrsh_complex function from the NRSH software 4.0 at the object plane distance (see Table 1). The kernels and distance are mentioned in the input configuration files, where the kernels used are invertible. To reverse the propagation, the mathematical inverse of the propagation kernel is used. Note that for some propagation kernels, this is not the same as applying the same propagation kernel with the negative object plane distance. The nrsh_complex function runs in Matlab 2017b (or higher) with the command:

```
>> function [hol_rendered] = nrsh_complex(hol, dataset, cfg_file, rec_dists,... direction, name_prefix)
```

where the input and output parameters are the same as nrsh, except for the following input argument:

- direction: Optional propagation direction. It should be one of the following char. arrays: 'forward' (propagation towards the object plane) or 'inverse' (propagation towards the hologram plane). Default: 'forward'.

and the following change in the output argument:

- hol_rendered: light wave in the object plane, returned as a standard complex-valued floating point matrix. Note that in case of multiple reconstructions, hol_rendered is the last reconstruction performed.

The software calculates the numerical propagation of the complex light wave in the object planes located at distances defined in rec_dists, provided as input. If the corresponding functionality is enabled through the configuration file, the reconstructions are saved as MAT files and stored in the ./figures/ConfigurationFileName/ path, where ./ is the root folder of NRSH. The file names are structured as follows:

<name_prefix>_<ConfigurationFileName>_Rec_dist<Rec_dist>.mat

4.1.3 Floating-point to integer conversion
Since not all anchor codecs operate at floating-point precision, the holographic content is mapped from floating-point representation to a 16-bit integer representation, before encoding. This process is inversed immediately after decoding.
The mapping is based on a uniform mid-rise quantizer to convert the floating point inputs to integer bit-depths. For any given distribution, a Lloyd max quantizer will asymptotically iterate towards the mapping that minimizes the mean-squared error (MSE). However, for sufficiently large bit-depths, the Lloyd-max quantizer will approach the uniform quantizer [8]. The dequantized output for the uniform mid-rise quantizer is given by:

$$Q(x, L, X_{\text{max}}) = \begin{cases} \left(\frac{-L}{2} + 0.5\right) \frac{2X_{\text{max}}}{L} & \text{else if } x < -X_{\text{max}} \\ \left(\frac{xL}{2X_{\text{max}}} + 0.5\right) \frac{2X_{\text{max}}}{L} & \text{else if } -X_{\text{max}} \leq x \leq X_{\text{max}} \\ \left(\frac{L}{2} - 0.5\right) \frac{2X_{\text{max}}}{L} & \text{otherwise} \end{cases}$$

(8)

where $L = 2^{16}$, while X_{max} refers to the value that minimizes the MSE for the uniform quantizer. The choice of X_{max} represents a trade-off between the granular error (increases as X_{max} increases) and the overflow error (decreases as X_{max} increases till the largest value to be quantized) [16].

Since we use high bit-depths, the overflow error dominates the granular error and the value of X_{max} is almost always the largest floating point value to be quantized. However, for some cases we notice that X_{max} has a unimodal relationship with respect to its possible values, where X_{max} is lesser than the largest floating point value. Hence we also use the "golden section search" numerical optimization technique to obtain another candidate of X_{max} [12], from which the final candidate is chosen.

Please note, that solely anchor codecs are subjected to this process. Proponent codecs shall be able to handle floating-point data at the input and output. The supported internal precision of the codecs under test is at the discretion of the proponents.

4.1.4 Anchor codecs

Three anchor codecs are selected for reference purposes: H.265/HEVC, JPEG 2000 and JBIG-1. As indicated in Table 3, they are not deployed in every setting.

| Tab. 3: Anchor codecs and their employment during testing |
|-------------------|----------------|---------------|----------------|----------------|
| **Anchor codec** | **Higher precision** | **Binary** | **Hologram plane** | **Object plane** |
| H.265/HEVC | Yes | – | Yes | – |
| JPEG 2000 | Yes | – | Yes | – |
| JBIG-1 | – | – | Yes | – |

H.265/HEVC is configured in intra-frame mode. HM version 16.22 is being deployed in the experiment. The software can be downloaded from: https://vcgit.hhi.fraunhofer.de/jct-vc/HM/-/releases/HM-16.22 and should be compiled for as 64bit binary after enabling internal 16bit representation by changing `define RExt__HIGH_BIT_DEPTH_SUPPORT 0` to 1 in the file sources/Lib/TLibCommon/TypeDef.h.

The exact configuration files of the codec can be found below. The codec was called as `TAppEncoder.exe -c HEVC_genConf.cfg -c HEVC_specConf.cfg`.

15 of 22
Listing 1: HEVC_genConf.cfg

```
#======== Profile definition ==============
Profile : monochrome16
Tier : main

#======== Unit definition ================
MaxCUWidth : 64
MaxCUHeight : 64
MaxPartitionDepth : 4
QuadtreeTULog2MaxSize : 5
QuadtreeTULog2MinSize : 2
QuadtreeTUMaxDepthInter : 5
QuadtreeTUMaxDepthIntra : 5

#======== Coding Structure =============
IntraPeriod : 1
DecodingRefreshType : 0
GOPSize : 1

#=========== Misc. ============
InputColourSpaceConvert : UNCHANGED
InputChromaFormat : 400
InternalBitDepth : 16
WaveFrontSynchro : 1
SummaryVerboseness : 1
```

Listing 2: HEVC_specConf.cfg

```
InputFile : *YUV input filename*
InputBitDepth : 16
BitstreamFile : *Temporary bitstream filename*
ReconFile : *YUV compressed + decoded output filename*
Level : 8.5
QP : *qpn value*
SourceWidth : *nr. of columns of input*
SourceHeight : *nr. of rows of input*
FrameRate : 1
FrameSkip : 0
FramesToBeEncoded : 1
```

JPEG 2000 can handle floating-point input, but is constraint to operate at 16-bit such as H.265/HEVC. The software can be downloaded from: https://kakadusoftware.com/. The exact configuration of the codec can be found below:
kdu_compress -i <image>.bmp -o tmp.jp2 -precise -no_weights Qstep=2e-16.

JBIG-1 is included as anchor since it can handle binary image input. Hence, it will only be deployed during encoding of binary test data. The software can be downloaded from: https://www.cl.cam.ac.uk/~mgk25/jbigkit/. The exact configuration of the codec can be found below:

pbmtojbg <input-file.pbm> <output-file.jbg>

4.1.5 Coding conditions
For lossy coding the target bit rates for the experiments are provided in Table 4.

The bit rates for the colour holograms are three times as large as for the monochrome holograms since it is assumed the colour planes are encoded separately without exploiting potential correlations. Hence, every colour plane is attributed one third of the bit budget during encoding with the anchor encoders. Note also that both lossy and lossless – if supported – compression behaviour is tested.

In addition, and if supported by the proponent’s codec, also lossless coding results need to be provided for the holograms at 32 bit integer precision, 32-bit floating-point ...

Tab. 4: Target bit rates for the JPEG Pleno Holography objective test set.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Target Bitrate (bpp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monochrome holograms</td>
<td>0.1 0.25 0.5 1 2 4</td>
</tr>
<tr>
<td>Colour holograms</td>
<td>0.3 0.75 1.5 3 6 12</td>
</tr>
</tbody>
</table>

In addition to the bit rates mentioned in Table 4, holograms from the subjective test set should be evaluated also at the bit rates listed in Table 5 on a per hologram basis.

4.2 Pipeline for codecs under test

Fig. 2: Pipeline for the codec under test.

The proponents codecs will be evaluated in a similar fashion as the anchor codecs. The main difference is though that neither the floating-point to integer mapping and propagation modules are...
explicitly present in the testing pipeline. Note though that proponents might opt for including them in the codec’s modules depending on the advocated type of coding architecture/solution.

Encoders will be evaluated at the target bit rates reported in Table 4 as the case for the anchor codecs.

4.3 Quality assessment

4.3.1 Objective visual quality assessment
Objective visual quality assessment is performed in both the hologram plane as in the object plane. For the latter numerical reconstruction software (NRSH 3.0) is applied to generate the reconstructions at specified reconstruction points – viewing angles and focus planes – as listed in Table 1.

Since not all introduced metrics are suitable for deployment in both planes or all types of holograms, Table 2 lists which metrics are utilized for testing of visual quality of holograms.

Because of computational complexity reasons measurements are currently only taken at various reconstruction positions and to the extend allowed by the characteristics of the holograms, namely center, left, top-center and top-left to account for different viewing angles and this in up to three depth planes. Also the average performance of these measurements will be calculated.

A Matlab script (QM.m) will be made available that implements the quality metrics and testing scripts and will be part of the Call for Proposals package.

4.3.2 Subjective visual quality assessment
Due to the lack of availability of high-end holographic display and the costly nature of holographic printing for subjective testing purposes, subjective visual quality assessment will be performed on numerical reconstructions displayed on high-end 2D monitors. The holograms will be rendered as a pseudo-video to allow for better evaluation of the 3D features in the reconstructed holograms. Please note that a similar procedure is followed as for the Call for Proposals on Light Field Coding [10] and the Call for Evidence on Point Cloud Coding [14], while of course accounting for the particular properties of the holographic modality. Note that in later phases of the standardization process, other types of subjective tests might be carried out providing additional evidence in support of the decision process.

To facilitate a sound subjective evaluation, the holograms will be reconstructed and displayed according to the procedure outlined below. Because of time constraints to run the experiments only a selection of the holograms in 3 bitrates, listed in Table 5 will be involved.

View Reconstruction Holograms will be reconstructed using the reference software (NRSH) V3.0 [6] and should be reconstructed for, and viewed on, a professional Eizo CG318-4K 2D monitor with 4K UHD resolution (4096×2160 pixels) and 10-bit colour depth, which is recommended for use in visual test laboratories [5]. The colour representation mode is set to ITU-R BT.709-6. The monitor is calibrated using the build-in sensor on the monitor, operated by the ColorNavigator-7 Color Management Software. The calibration is set for the sRGB Gamut, D65 white point, 120 cd/m² brightness, and minimum black level of 0.2 cd/m².
Tab. 5: Selected holograms and Target bit rates for the subjective test

<table>
<thead>
<tr>
<th>Hologram</th>
<th>Selected Bitrates (bpp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CornellBox3_16K</td>
<td>0.1, 0.3, 0.8</td>
</tr>
<tr>
<td>2 DeepChess</td>
<td>0.1, 0.5, 2.5</td>
</tr>
<tr>
<td>3 Biplane16k</td>
<td>0.5, 1.8, 6</td>
</tr>
<tr>
<td>4 Dices16k</td>
<td>0.5, 1.2, 3.6</td>
</tr>
<tr>
<td>5 Piano16k</td>
<td>0.3, 1.2, 3.6</td>
</tr>
<tr>
<td>6 Breakdancers8k4k</td>
<td>0.75, 3, 9</td>
</tr>
<tr>
<td>7 Astronaut</td>
<td>0.1, 0.25, 0.75</td>
</tr>
<tr>
<td>8 Lowiczanka Doll</td>
<td></td>
</tr>
</tbody>
</table>

Moreover, holograms should be reconstructed such that the intrinsic resolution of the rendered scene matches the display resolution. To do so, a sliding synthetic aperture of the size 2048×2048 pixels is used to extract the views for reconstruction. For holograms reconstructed with larger apertures, cropping will be applied to fit the 2048×2048 pixel patch size. The exact cropping zone will be at the discretion of the test lab.

Video Production A pseudo video sequence will be generated from the reconstructed views for each reference and test hologram.

The exact path used for sliding the aperture on holograms and extracting the video sequences will vary depending on the content type and will only be known to a limited set of people responsible for subjective testing and not involved as proponent in the process. The view paths are not revealed to proponents to avoid proposals being explicitly tailored according to content view paths.

Viewing Conditions Viewing conditions should follow ITU-R Recommendation BT.500.13 [BT50013]. MPV video player will be used for displaying the videos.

Displays used in the subjective testing should have anti-aliasing disabled.

Training Before Subjective Evaluation The test subjects are required to pass the Snellen visual acuity test and the Ishihara colourblindness test. Prior to subjective evaluation there will be a training period to acclimatize participants to the purpose of the experiment and their task.

This training period involves showing participants video sequences similar to the ones used in the test, guidance regarding presence of the speckle noise and the scoring protocol. **Test subjects will be instructed to ignore the speckle noise in their evaluation.** Participants are requested to score the perceived quality of the rendered hologram in relation to the uncompressed reference.

Subjective Evaluation Protocol The DSIS simultaneous test method will be used with a 5-level impairment scale, including a hidden reference for sanity checking. Both the reference and the degraded stimuli will be simultaneously shown to the observer, side-by-side, and every
subject asked to rate the visual quality of the processed with respect to the reference stimulus. The reference will always shown on the same location.

Analysis of Results Outlier detection algorithm based on ITU-R Recommendation BT.500-13 [BT50013] should be applied to the collected scores, and the ratings of the identified outliers will be discarded. The scores are then averaged to compute mean opinion scores (MOS) and 95% Confidence Intervals (CIs) computed assuming a Student’s t-distribution.

4.3.3 Metrological quality assessment
The exact specification of the metrological quality assessment is currently subject of an exploration study. For QPI (Quantitative Phase Imaging), the acceptable values of RMSE error on the retrieved phase is around 0.05 rads [rads] and serves as the region of interest shown in Table 6.

<table>
<thead>
<tr>
<th>Tab. 6: Target bit rates for the JPEG Pleno Holography test set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset</td>
</tr>
<tr>
<td>Microscopy holograms</td>
</tr>
</tbody>
</table>
References

